Here we demonstrate that microcins enable the probiotic bacterium Escherichia coli Nissle 1917 (EcN) to limit the expansion of competing Enterobacteriaceae (including pathogens and pathobionts Background: Probiotic Escherichia coli Nissle 1917 (EcN) has been widely studied for the treatment of intestinal inflammatory diseases and infectious diarrhea, but the mechanisms by which they communicate with the host are not well-known. Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria and deliver microbial molecules to Escherichia coli Nissle 1917 (EcN) is a genetically controlled probiotic with an excellent human safety record for improving gut microbiome metabolic disorders and immune system disorders. Here we focused to explore the application and effect of probiotic EcN on the gut microbiota-metabolism-IL-22-mitochondrial damage axis in PCOS. We engineered these cortisol responsive genetic elements from C. scindens into an enteric probiotic, E. coli Nissle 1917, to drive the expression of a fluorescent reporter allowing for the designing, testing, and building of a robust and physiologically relevant novel cortisol probiotic sensor. This smart probiotic was further engineered to be Escherichia coli Nissle 1917 (EcN), a Gram-negative probiotic, was shown to be a potent immunostimulant and alleviated HRV-induced diarrhea in monocolonized gnotobiotic (Gn) piglets. Our goal was to determine how EcN modulates immune responses in ciprofloxacin (Cipro)-treated Gn piglets colonized with a defined commensal microbiota (DM) and Background: Pathogenic adherent-invasive Escherichia coli have been isolated from ileal lesions of Crohn's disease. Aim: : To investigate the non-pathogenic E. coli strain Nissle 1917 (Mutaflor) as possible maintenance therapy in inflammatory bowel disease by testing its ability to prevent adherent-invasive E. coli strains from adhering to and invading human intestinal epithelial cells in vitro. Aims: To verify the presence of Escherichia coli Nissle 1917 as a natural isolate in swine and to characterize in vitro probiotic properties as well as in vivo persistence in a feeding experiment. Methods and results: During studies on the intestinal microflora of pigs, we isolated E. coli Nissle 1917 sporadically from a pig population over a Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617–1623 (2004). Article Google Scholar By administering Escherichia coli strain Nissle 1917, which assimilates iron by similar mechanisms, we show that this non-pathogenic bacterium can outcompete and reduce S. Typhimurium colonization in mouse models of acute colitis and chronic persistent infection. This probiotic activity depends on E. coli Nissle iron acquisition as mutants Ii14.

escherichia coli nissle 1917 probiotic